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Abstract—We present an optimal and efficient algorithm for
finding a shortest path in an elastic optical network. The
algorithm is an adaptation of the Dijkstra shortest path al-
gorithm, where we take into account the spectrum continuity
and contiguity constraints, and a limit on the path length. The
adaptation redefines the node label in the Dijkstra algorithm,
allows for revisiting nodes even at a higher cost for different slices,
avoids loops, and prunes worse labels. The algorithm is generic
and agnostic of a specific spectrum allocation policy, as it finds the
largest set of available slices from which slices can be allocated
in any way. We describe and motivate the algorithm design,
and point to our freely-available implementation using the Boost
Graph Library. We carried out 8100 simulation runs for large,
random and realistic networks, and found that the probability
of establishing a connection using the proposed algorithm can be
even twice as large as the probability of establishing a connection
using the edge-disjoint shortest paths, and the Yen K shortest
paths.

Index Terms—elastic optical networks, Dijkstra, constrained
routing, Yen algorithm, edge-disjoint shortest paths, simulation,
Gabriel graph

I. INTRODUCTION

Elastic optical networks (EON), a.k.a., the flex-grid net-

works, are considered the successor of wavelength-division

multiplexing (WDM) networks. In recent years, EONs have

been intensely researched by both the industry and the

academia.

In EONs, the optical spectrum (the erbium window) is

divided into thin spectrum slices (of, e.g., 6.25 GHz width),

as opposed to coarse fixed-grid channels (of, e.g., 25 GHz

width) of wavelength-division multiplexing (WDM) networks.

In EONs, contiguous slices are concatenated to form a slot.

Slots are tailored for a specific demand, unlike WDM chan-

nels, thus making EONs more spectrum-efficient than WDM

networks.

The routing of a single connection in an EON is the single

most important operation of a network management system

(NMS), and one of the many research problems of the EON

design, planning, and operation. For the NMS based on the

Generalized Multi-Protocol Label Switching (GMPLS), the

path computation element (PCE) is responsible for solving

the routing and spectrum assignment (RSA) problem for the

given demand, i.e., finding the path and the slices.

EONs should deal with dynamic traffic, where connections

frequently arrive and do not last long as opposed to the

incumbent WDM traffic. Furthermore, given the growing

optical networks, the ever-increasing need for bandwidth and

connection agility, further increased by the requirements of the

fifth generation (5G) wireless networks, the PCE is expected

to solve the RSA problem fast and well.

The RSA problem can be constrained by, for example, the

path length, i.e., we can require the solution to be shorter than

the given limit. This is an acceptable and desired limitation,

since we may need to limit the path length for a number of

reasons: the connection takes too much of network resources,

the latency is too large, or the quality of the optical signal

is low. The constriction limits the search space, thus perhaps

making the problem tractable, i.e., solvable in reasonable time.

To the best of our knowledge, it has not been proven whether

a constriction makes the RSA problem tractable or not.

Our novel contribution is the algorithm which quickly and

optimally solves the constrained RSA problem for a single

demand. The algorithm is an adaptation and constriction of

the Dijkstra shortest path algorithm. We show its effective-

ness in comparison to routing with the edge-disjoint shortest

paths and the Yen K shortest paths. The high-quality, high-

performance implementation of the algorithm using the Boost

Graph Library (BGL) is available at [1] under the General

Public License (GPL).

Dijkstra is a principal graph algorithm, amenable to various

adaptations due to its simple and clever design. Dijkstra is

efficient and optimal, and follows the label-setting paradigm,

as opposed to the label-correcting paradigm [2]. At first look,

our adaptation seems to divorce the label-setting paradigm in

favor of the label-correcting paradigm, because we allow for

revisiting nodes, which Dijkstra does not do, and which is a

hallmark of the label-correcting algorithms. But this is not so,

the proposed algorithm is still a label-setting algorithm.

The article is organized as follows. In Section II we briefly

review related works, in Section III we define the research

problem, in Section IV we describe the algorithm, and in

Section V we report on the simulation results. Finally, Section

VI concludes the article.



II. RELATED WORKS

The RSA problem is reported to be NP-complete, so along

with linear programming formulations, there have been heuris-

tic algorithms proposed for real-sized networks [3]. In [4],

these algorithms are categorized into one-stage algorithms,

which route and assign spectrum in one stage, and two-stage

algorithms, which do it in two separate stages.

In [3], the authors propose a one-stage heuristic algorithm,

which is a constrained Yen K shortest path algorithm. The

algorithm prunes the path deviations incapable of supporting

a demand. The algorithm resorts to the Dijkstra algorithm to

compute shortest paths.

In [5], the authors report a two-stage algorithm for routing

with Yen K shortest paths. First, the Yen algorithm com-

putes K shortest paths also using the Dijkstra algorithm, and

next they try to establish a connection along these paths.

The authors also proposed a one-stage algorithm, termed a

modified Dijkstra algorithm, which is a typical constriction of

the Dijkstra algorithm, where a candidate path is rejected if it

cannot support a demand due to the lack of slices.

Another two-stage algorithm is routing with edge-disjoint

shortest paths. First, all edge-disjoint shortest paths are found

with the Dijkstra algorithm, and next they try to establish a

connection along these paths.

All these algorithms, unlike ours, fail to find a shortest path

capable of supporting a demand, when there is a shorter path

incapable of supporting a demand, because that shorter path

decoys Dijkstra into a dead end.

III. PROBLEM STATEMENT

Given:

• directed multigraph G = (V,E), where V = {vi} is a

set of nodes, and E = {ei} is a set of edges,

• attribute c of edge ei, i.e., ei.c, which gives non-negative

cost (length) of edge ei,

• attribute SSC of edge ei, i.e., ei.SSC, which gives the

set of available slices, with Ω being the set of all slices,

• maximal path cost (length) m,

• demand d = (s, t, n), where s is the source node, t is

the target node, and n is the number of contiguous slices

required.

Sought:

• shortest path p = (e1, ..., ei, ..., el) for demand d in graph

G, where ei is the i-th edge of path p,

• largest set of slices Σ, which can support demand d.

The objective is to find the largest set of slices (SSC)

along the shortest path (SP). An SSC can describe any slices

available on an edge or along a path, contiguous or not. The

sought SSC is the largest possible, which can support demand

d with n slices, i.e., it can have any number of contiguous

spectrum fragments, each with at least n slices.

This problem formulation allows the algorithm to be more

generic and agnostic of the spectrum allocation policy, because

once the largest SSC is found, any policy can be used to

allocate slices, e.g., first or fittest.

IV. PROPOSED ALGORITHM

We adapted and constrained the shortest path Dijkstra

algorithm to find an SP in EONs. The adaptation is novel,

and the constriction is trivial. The adaptation keeps track of

the SSCs along the found paths, while the constriction limits

the length of an SP. The found paths are the SPs capable of

supporting a given SSC, though they are usually not the SPs

in the graph.

The Dijkstra algorithm is a label-setting algorithm in that

once a node is visited, its label is set, and does not change, but

the label is updated by the edge relaxation, if the given edge

yields a better than known label. In label-setting algorithms, a

label is associated with every node, and gives information on

what cost and how to reach the given node from the source.

In Dijkstra a label is the pair of cost and a preceding node.

Our label, however, is more elaborate, since it has to

describe more elaborate data. We define a label as a tuple

of cost, a preceding edge, and an SSC. For instance, label

(1, e1, {1, 2}) says that a node is reached with cost 1 along

edge e1 and with the SSC of {1, 2}. To allow for multigraphs,

in the tuple we keep a preceding edge, not a node.

In Dijkstra, node labels converge to their optimum by edge

relaxation, which updates a label when a better one is found.

Dijkstra compares two labels: a candidate one, and a known

one. The candidate label is better if it offers to reach the given

node at a lower cost than the known one.

When trying to relax a candidate edge, we also compare

two labels, but we take into account not only the costs, but

also the SSCs of the labels. Label l1 is better than or equal

to label l2, denoted by l1 ≤ l2, if cost(l1) ≤ cost(l2) and

SSC(l1) ⊇ SSC(l2).
In Dijkstra, a node has a single label, while we allow a node

to have a set of labels, provided that no label is better than

or equal to some other label, i.e., for any labels li and lj of a

given node, li ≤ lj is false. Our edge relaxation takes care of

that.

As to the constriction of the path length, during a node visit,

Dijkstra traverses the out-edges of the node to find candidate

labels, and we require a candidate label to be dropped if its

cost exceeds the limit m.

We had to limit the path length, because we had to narrow

the solution search space. Otherwise, the algorithm can, as

in some cases we ran into, keep going through a very large

search space for days, and not find a solution.

A. Adaptation

The adaptation takes into account the spectrum continuity

and contiguity constraints. The following three observations

shaped the adaptation.

1) Revisit nodes: In Dijkstra, a node is visited once for

a single label. We, however, allow for revisiting nodes for

multiple labels, because one of them yields, if possible, an SP

capable of supporting a given demand.

We show an example in Fig. 1 to motivate node revisiting,

where the edge label gives a length and an SSC available on

an edge, e.g., (1, {1, 2}) says the edge is of length 1 and slices



s i t

e1
(1, {1, 2})

e2
(2, {2, 3})

e3
(10, {2, 3})

Fig. 1: Example for node revisiting and looping.

1 and 2 are available. We are searching for an SP with two

slices from node s to node t.

In the first step of Dijkstra, node s is visited, and node i is

discovered along the two parallel edges e1 and e2, but the label

is not updated for the longer edge e2. In the second step, node

i is visited, and its label is set. Now the final label for node i

is known: (1, e1, {1, 2}). The problem is that node t cannot be

discovered, because the spectrum continuity constraint would

be violated: the SSC of edge e3 is {2, 3}, node i was reached

with SSC {1, 2}, and the demand requires two slices.

Revisiting nodes solves this problem. We allow for revisiting

a node even at a higher than known cost. In Dijkstra, in

contrast, a node is visited only once at the lowest cost.

Continuing with the example, and allowing for node re-

visiting, now node i is discovered along both parallel edges

e1 and e2, and none of the discoveries is discarded. Then

node i is visited along edge e1 with label (1, e1, {1, 2}), and

then revisited along edge e2 with label (2, e2, {2, 3}), thus

allowing node t to be discovered, end eventually visited with

label (3, e3, {2, 3}).

For simplicity, we illustrated node revisiting with parallel

edges, but could have also used parallel paths. In the example,

for instance, edge e2 can be replaced with two edges and a

node between them.

2) Avoid loops: Revisiting nodes may cause the search

to find paths with loops. For instance, considering the same

example in Fig. 1, when visiting node i, we discover node s

and later revisit it, thus finding the loop (e1, e2). In Dijkstra,

loops are avoided by the edge relaxation, which accepts only

labels of lower cost: since edge weights are non-negative,

loops cannot decrease cost, and so they will not be allowed

by edge relaxation. The thing is, that we need to allow for

revisiting even at higher costs, but also need to avoid loops.

To avoid loops, and still to allow for node revisiting, an

edge can be relaxed even at a cost higher than the cost of

any node label, provided the candidate label offers an SSC

not already included in SSCs of the node labels. Therefore,

a node is visited and possibly revisited always at the lowest

cost for an SSC not included in the SSCs of previous visits.

And so, a node can have a set of labels, but no label is better

than or equal to some other label, i.e., for any labels li and lj
of a given node, li ≤ lj is false.

For example, in Fig. 1, the initial label for node s is l1 =
(0, e∅,Ω). The null edge e∅, which is not present in graph G,

marks the beginning of an SP. When visiting node i with label

(1, e1, {1, 2}), node s is discovered along edge e2 with label

l2 = (3, e2, {2}), but the edge will not be relaxed, because

s i t

e1
(1, {1, 2})

e2
(1, {1, 2, 3})

e3
(1, {1, 2, 3})

Fig. 2: Example for purging worse labels.

l1 ≤ l2, thus avoiding a loop.

3) Purge labels: When we relax an edge, we add a new

label for the node, but we may also need to purge worse labels.

The purging of worse labels is illustrated by the example in

Fig. 2. When visiting node s, node i is discovered along edge

e1 with label l1 = (1, e1, {1, 2}), and node i has label l1
only. Next, node i is discovered along edge e2 with label l2 =
(1, e2, {1, 2, 3}). Label l2 is better than l1, because the SSC

of l2 includes the SSC of l1, and both labels are of the same

cost. We purge l1 from the set of labels of node i, and now

node i has label l2 only.

B. Algorithm

Algorithm 1 presents the complete algorithm with the typ-

ical of the Dijkstra algorithm structure, where the main loop

processes the priority queue elements. Our priority queue Q

stores the elements q = (c, e), which are pairs of cost c, and

edge e. The queue is sorted according only to the increasing

cost c of the elements, without the consideration of edge e,

which is associated with the cost to tell what to process.

We require Q to store only unique elements: pushing the

same element q many times results in just one element q in the

queue. This property is required to process in one iteration of

the main loop all the labels with the same cost and edge, but

a different SSC. Q can be implemented as a set to guarantee

this property.

We initialize Ls = {(0, e∅,Ω)} to make all slices available

at node s at cost 0. The null edge e∅, which is not present in

graph G, marks the beginning of an SP. Lv is a set of labels

of node v, and L = {Lv} is the set of sets of node labels.

Next, we put element (0, e∅) to the queue to boot the search.

In every iteration of the main loop, we pop from Q element

q = (c, e), and visit node v = e.target reached along edge

e at cost c. The target node of an edge is given by attribute

target, i.e., e.target, with the special case of e∅.target = s.

If v = t, then we found a solution and break the main loop.

In the main loop we iterate over two nested loops. One loop

iterates over all SSCs S of labels in Lv with cost c and edge e,

and the other loop iterates over all outgoing edges e′ of node

v, in order to discover a neighbor node v′ = e′.target along

edge e′ at cost c′ = c + e′.cost with SSC S′ = S ∩ e′.SSC.

We continue working with S′ and e′, if c′ ≤ m and S′ can

support demand d, i.e., S′ has at least n contiguous slices.

Next, we check whether edge e′ can be relaxed with

candidate label l′, i.e., whether node v′ has no label l better

than or equal to label l′. If so, then 1) we purge every label l

of node v′ if l′ ≤ l, 2) add label l′ to the set of labels of node

v′, 3) push element (c′, e′) to Q. Edge relaxation replenishes



Algorithm 1

In: G = (V = {vi}, E = {ei}),W (ei), S(ei),m, d = (s, t, n)
Out: p = (e1, ..., ei, ..., el), Σ = {σi}

Ls = {(0, e∅,Ω)}
push (0, e∅) to Q

while Q is not empty do

q = (c, e) = pop(Q)
v = e.target

if v == t then

break the while loop

end if

SSSC = {l.SSC : l ∈ Lv and l.c == c and l.e == e}
for all S ∈ SSSC do

for all e′ ∈ outgoing edges of v do

S′ = S ∩ S(e′)
c′ = c+W (e′)
if c′ ≤ m and S′ can support d then

v′ = e′.target

l′ = (c′, e′, S′)
if ∄l ∈ Lv′ : l ≤ l′ then

Lv′ = Lv′ \ {l : l ∈ Lv′ and l′ ≤ l}
Lv′ = Lv′ ∪ {l′}
push (c′, e′) to Q

end if

end if

end for

end for

end while

return (p,Σ) = trace(L, s, t)

the queue, and the algorithm keeps iterating until destination

node t is reached, or the queue is empty.

Finally, function trace traces back an SP found, if any,

based on the node labels L. We do not present the algorithm

for tracing back an SP, since it is rather easy.

V. SIMULATIVE STUDIES

We evaluate the performance of the proposed algorithm with

simulations, and compare it to the performance of routing

with the edge-disjoint paths and the Yen K shortest paths. We

also show, based on the simulation results, that the proposed

algorithm efficiently solves the constrained RSA problem,

which suggests that this problem is tractable, though we offer

no proof.

For comparison, we use the edge-disjoint paths and the Yen

K shortest paths, because they are very different: the edge-

disjoint shortest paths do not share even a single edge, while

the Yen K shortest paths can differ with a single edge only. To

find edge-disjoint paths, we search for an SP in a graph with

the edges of the previous SPs disabled. The Yen K shortest

paths are found with the well-known Yen algorithm. We do

not limit the number of edge-disjoint paths, because at most it

equals to the degree of the source or target nodes, which is a

small number. We limit, however, the Yen shortest paths to at

most K = 10, because Yen can produce a very large number

of paths.

Having either the edge-disjoint shortest paths or the Yen

K shortest paths, we try to route a demand as follows. We

start with the first SP, and calculate the largest available SSC

along the path by intersecting all the SSCs available on every

edge of the shortest path. If the largest SSC cannot support

the demand, we try the next shortest path, until there are no

more shortest paths.

Having found a path with the largest SSC, a spectrum

allocation policy allocates n slices for demand d from the

largest SSC. We consider only the fittest and the first spectrum

allocation policies. The fittest policy allocates n slices in the

fittest fragment of the largest SSC, which can support demand

d, i.e., the smallest fragment with at least n slices. The first

policy allocates n slices in the first fragment (with slices of

the smallest numbers) of the largest SSC, which can support

demand d.

To be general, we formulate and solve the problem for a

directed multigraph, but we use it for an undirected graph,

which models an EON.

A. Simulation setting

We generate a set of random graphs with random traffic

to obtain reliable statistical results for various populations of

interest, because we find studying a specific topology (e.g.,

Polish PIONIER or NSFNet) with some specific traffic case

rather inconclusive. We use Gabriel graphs, because they have

been shown to model the properties (e.g., the node degree) of

the transport networks very well [6].

We randomly generate 50 Gabriel graphs, where each edge

has 400 slices. Each graph has 100 nodes, which are uniformly

distributed over an area 1000 km long and 1000 km wide.

In generating Gabriel graphs, the number of edges cannot be

directly controlled, as it depends on the location of nodes, and

on the candidate edges meeting the conditions of the Gabriel

graph. The statistics of the generated graphs are given in Table

I. The limit on the path length is m = 2000 km, which is well

above 1582 km, the length of the longest of all shortest paths

in the generated graphs.

Demands arrive according to the exponential distribution

with the rate of λ demands per day. The probability distribu-

tion of the demand holding time is also exponential with the

mean of β = 10 days. The number of slices a demand requires

follows the Poisson distribution with the mean of 10 slices.

We argue that the choice of a traffic model is irrelevant

to our study as the traffic only produces the input data (i.e.,

the state of the graph) for the routing algorithms, and we

chose the exponential and Poisson distributions to keep the

discussion simple. The question is how the algorithms perform

under the given utilization and fragmentation, regardless of

how the utilization and fragmentation were obtained, which

could have been equally well produced randomly. For the very

same reason we do not incorporate into our study spectrum

defragmentation.



value min average max variance

Number of links 160 179.2 194 48.52

Link length 1 97.95 347 2696.46

Node degree 1 3.584 8 1.2213

SP length 1 589.61 1582 78118.1

SP hops min 1 6.7634 22 10.8737

TABLE I: Statistics of the generated Gabriel networks.

We define network utilization as the ratio of the number of

the slices in use to the total number of slices on all edges. We

cannot directly control the network utilization, but measure

it in response to the offered load. And so to obtain different

values of network utilization, we varied λ with 27 different

values of 10, 12.5, 15, 17.5, 20, 25, 30, 35, 40, 45, 50, 55,

60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 600, 700, 800,

900, and 1000 demand arrivals per day.

A simulation run simulates 100 days of a network in

operation. For every simulated day, the following values are

measured: (a) the instantaneous network utilization, (b) the

average probability of establishing a connection during that

day, (c) the instantaneous number of active connections, (d) the

instantaneous amount of capacity served, (e) the average length

of an established connection during that day, (f) the average

number of slices of an established connection during that

day, (g) the instantaneous number of spectrum fragments of

an edge, (h) the average time taken by an SP search during

that day. When a simulation finishes, the measured values are

averaged and reported as the simulation results.

We want to get reliable results for a statistical population

of simulation runs. A population is described by the routing

algorithm used, the spectrum allocation policy used, and λ,

and so there are 162 populations considered (three routing

algorithms × two spectrum allocation policies × 27 values of

λ). In a given population, all simulation runs have the same

parameters, except the seed of a random number generator

in order to generate different Gabriel graphs and different

traffic. To get reliable results for a population, we carry out

50 simulation runs which are the population samples, and

calculate the sample means of all the results reported by a

simulation, except the average search time of which we take

the minimum. In total there are 8100 simulation runs (162

populations × 50 samples). We reckon the sample means

reliably estimate the results of their populations, since their

relative standard error is below 1%.

We do not calculate the sample mean of the average search

time, but take the minimum, since we run simulations using a

supercomputing infrastructure, and cannot control the specific

hardware for our simulations, and how much the hardware is

loaded with other jobs. Other processes running can heavily

utilize memory, thus causing cache misses in our simulations,

which severely degrade performance. The supercomputing

infrastructure is composed of thousands of nodes equipped

with the state-of-the-art multi-core processors of the AMD64

architecture.

B. Simulation results

Figures 3a-3d show the simulation results for routing with

the proposed algorithm (solid curves), routing with the edge-

disjoint paths (dashed curves), and routing with the Yen K

shortest paths (dotted curves). Routing was carried out for

two spectrum allocation policies: fittest (thick curves) and first

(thin curves). Each figure has six curves for three routing types

with two spectrum allocation policies. Each curve is plotted

with 27 data points for different values of λ. Each data point

represents a sample mean, except the time of the shortest path

search, which represents a sample minimum. Since the relative

standard errors of the sample means are below 1%, the error

bars would be too small to plot.

Fig. 3a shows the probability of establishing a connection

as a function of network utilization. We are interested in how

a network performs for a given network state expressed by

utilization. The proposed algorithm considerably outperforms

the other routing types for all network loads. For the utilization

of 30%, the proposed algorithm still has the probability of

nearly 1, while for the other two types, their probabilities drop

to about 0.75. For the load of 40%, the probability for the

proposed algorithm is almost twice as large as that for the

other two routing types.

Fig. 3b shows the time taken by a shortest path search

as a function of network utilization, regardless of whether

the search was successful or not. The algorithms for finding

edge-disjoint paths and Yen K shortest paths do not take into

account the slices available on edges, they do not depend on

the utilization, and so their times are constant. Interestingly,

the time taken by the proposed algorithm decreases as the

utilization increases, because the search space gets narrower.

Fig. 3c shows the average length of an established connec-

tion as a function of network utilization. As the network is

utilized more, the average length of a connection increases,

because the proposed algorithm finds more circuitous paths,

but still finds them, while the other routing types fail. The

average length for all routing types drops as utilization keeps

increasing, since demands with end nodes close to each other

are more likely to be established.

Fig. 3d shows the average number of slices of an established

connection as a function of network utilization. As expected,

the average number decreases as utilization increases, because

demands which require a smaller number of slices, are more

likely to be established. At first glance, the proposed rout-

ing performs better for network utilization below 45%, and

worse otherwise than the other two routing types. However,

this is the average number of slices, provided a connection

was established. As the other two routing algorithms offer

lower probabilities of establishing a connection, they are more

likely to establish short connections, which are more likely to

succeed demanding a larger number of slices. The proposed

algorithm is more likely to establish connections between pairs

of distant nodes with a smaller number of slices, thus lowering

the average number of slices.
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Fig. 3: Simulation results for Gabriel graphs.

VI. CONCLUSION

We proposed the adaptation and the constriction of the

Dijkstra shortest path algorithm for finding shortest paths in

elastic optical networks. The adaptation is a novel contribu-

tion, which takes into account the spectrum continuity and

contiguity constraints.

The routing and spectrum assignment problem is known to

be NP-complete, yet our algorithm has no difficulty finding a

solution, since, we speculate, limiting the path length narrows

the search space. Limiting the path length is not a problem,

since it is needed in practice anyway.

Our extensive simulation studies show that the proposed

algorithm outperforms two other routing types frequently used

in research on elastic optical networks: routing along the edge-

disjoint paths, and routing along the Yen K shortest paths. The

studies also show that the algorithm can be used for routing

in elastic optical networks of large sizes, thus making the

algorithm practical.

Future work could concentrate on removing the path length

constriction, and finding the stop condition for the algorithm,

i.e., a condition to stop searching for a path, when it is known

that no path can be found.
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